Project 1511 – Why we should train separate AIs – one for thruth, one for art

2 Wydmuh 0 5/16/2025, 9:41:24 AM
Project 1511: The AI Dichotomy Initiative.

At the beginning i will mark, that text was written with the help of AI, my english is not as good as i thought .

Why i think we should split AI into two distinct, non-overlapping systems:

1. Kalkul (Logic Engine)

   - Puprouse: pure factual accuracy (STEM, law, medicine).  

   - Rules: No metaphors, no "I think" – only verifiable data.  

   - *Example Input:* "Calculate quantum decoherence times for qubits." → Output: Equations + peer-reviewed sources.  
2. Bard (Creative Agent)

   - Purpose: Unconstrained abstraction (art, philosophy, emotion).  

   - Rules: No facts, only meaning-making. Flagged disclaimers (e.g., "This is poetry, not truth").  

   - Example Input: "Describe grief as a physical space." → Output: "A room where the walls are made of old phone calls..."
The 8+2 Rule: Why Forcing Errors in Creative AI ('Bard') Makes It Stronger" We’re trapped in a loop: We train AI to "never" make mistakes, then wonder why it’s creatively sterile. What if we did the opposite?

The 8+2 Rule for "Bard" (Creative AI)

For every 10 responses, Bard generates: - 8 "logically sound" answers (baseline).

   - 2 *intentional errors* (wrong conclusions, flawed syllogisms, or "poetic" math).  
Errors are tagged (e.g., " Fallacy: Affirming the consequent") but not corrected. Users dissect errors to see how Bard breaks logic—and why it’s useful. Example: Question = "Explain democracy"

8 Correct Responses:

1. "A system where power derives from popular vote."

2. "Rule by majority, with protections for minorities."

[...]

2 Intentional Errors:

1. "Democracy is when two wolves and a sheep vote on dinner."

   - Error: False equivalence (politics ≠ predation).  

   - Value: Exposes fears of tyranny of the majority.  
2. "Democracy died in 399 BC when Socrates drank hemlock."

   - Error: Post hoc fallacy.  

   - Value: Questions elitism vs. popular will.  
Why This Works

Trains users , not just AI: - Spotting Bard’s errors becomes a "game" (like debugging code).

   - Users learn logic faster by seeing broken examples (studies show +30% retention vs. dry lectures).  
Bard’s "personality" emerges from flaws: - Its "voice" isn’t sanitized—errors reveal biases (e.g., libertarian vs. collectivist slant).

Safeguards "Kalkul": - By confining errors to Bard, Kalkul stays *pristine* (no hallucinations in medical advice).

3. Hybrid Bridge (Optional Legacy Mode)

   - Purpose: Temporary transition tool.  

   - Mechanics: ONLY merges pre-generated outputs from Kalkul/Bard without adding new content.  
Why It Matters

- Efficiency: 40-60% lower compute costs (no redundant "bridging" layers).

- Trust: eliminates hallucination risks in critical domains.

- Creative Freedom: Bard explores absurdity without algorithmic guilt.

- Education: Users learn to distinguish logic from artistry.

Technical Implementation

- Separate fine-tuning datasets:

  - Kalkul: arXiv, textbooks, structured databases.  

  - Bard: Surrealist literature, oral storytelling traditions.  
- UI with a physical toggle (or app tabs): `[FACT]` / `[DREAM]` / `[LEGACY]`.

Cultural Impact

- For Science: Restores faith in AI as a precision tool.

- For Art: Unleashes AI-aided creativity without "accuracy" constraints.

- For Society: Models intellectual honesty by not pretending opposites can merge.

Call to Action

I seek:

- Developers to prototype split models (e.g., fork DeepSeek-MoE).

- Philosophers to refine ethical boundaries.

- Investors who value specialization over artificial generalism.

Project 1511 isn’t an upgrade—it’s a rebellion against AI’s identity crisis.

Comments (0)

No comments yet