Show HN: TheorIA – An Open Curated Physics Dataset (Equations,Explanations,JSON)

8 ManuelSH 4 5/11/2025, 11:43:56 AM theoria-dataset.github.io ↗
We’re building TheorIA— an open, high quality dataset of theoretical physics results: equations, derivations, definitions, and explanations — all in structured, machine- and human-readable JSON.

Why? Physics is rich with beautiful, formal results — but most of them are trapped in PDFs, LaTeX, or lecture notes. That makes it hard to:

- train symbolic/physics-aware ML models,

- build derivation-checking tools,

- or even just teach physics interactively.

THEORIA fills that gap. Each entry includes:

A result name (e.g., Lorentz transformations)

Clean equations (AsciiMath)

Straightforward step-by-step derivation with reasoning

Symbol definitions & assumptions

Programmatic validation using sympy

References, arXiv-style domain tags, and contributor metadata

Everything is in open, self-contained JSON files. No scraping, no PDFs, just clear structured data for physics learners, teachers, and ML devs.

Contributors Wanted: We’re tiny right now and trying to grow. If you’re into physics or symbolic ML:

Add an entry (any result you love)

Review others' derivations

Build tools on top of the dataset

GitHub https://github.com/theoria-dataset/theoria-dataset/

Licensed under CC-BY 4.0, and we welcome educators, students, ML people, or just anyone who thinks physics deserves better data.

Comments (4)

somethingsome · 15h ago
There are only 3 entries, am I correct?
ManuelSH · 12h ago
Yes, we are at very early stage. Looking for other physics experts to help increasing it.
somethingsome · 9h ago
I like the idea of having a dataset for physics, but those entries are very basics, most of the physics happens with very complicated maths and it will be difficult to make an entry for a lot of physics.

For example, imagine the entry for the standard equation, should all the derivation and symbolic implementation done as a unique entry? It will be difficult to separate it in logical entries that reference each others, and many physical ideas are fundamentally different, leading to divergences.

I have the impression that it should be easier to just parse reference books and format each paragraph/section as an entry, and maybe build a graph. (considering the reference book as authoritative on the subject)

ManuelSH · 2h ago
I guess you mean the Lagrangian of the Standard Model… which I agree, it will be daunting… although there is no limit in a json…

The idea of automatically parsing books is very nice and possibly faster, but note that:

- there are already various datasets of physics papers and such content - the result will be quite different versus what we intent here, which is to have a high quality dataset of physics results with clear derivations (whenever derivation exist)

Maybe we can still use your idea to achieve the last point in some way… maybe there is a book that is already formatted as the dataset and we could use it as a starting point. But I don’t know any.