Show HN: HelixDB – Open-source vector-graph database for AI applications (Rust)
Why a hybrid? Vector databases are useful for similarity queries, while graph databases are useful for relationship queries. Each stores data in a way that’s best for its main type of query (e.g. key-value stores vs. node-and-edge tables). However, many AI-driven applications need both similarity and relationship queries. For example, you might use vector-based semantic search to retrieve relevant legal documents, and then use graph traversal to identify relationships between cases.
Developers of such apps have the quandary of needing to build on top of two different databases—a vector one and a graph one—plus you have to link them together and sync the data. Even then, your two databases aren't designed to work together—for example, there’s no native way to perform joins or queries that span both systems. You’ll need to handle that logic at the application level.
Helix started when we realized that there are ways to integrate vector and graph data that are both fast and suitable for AI applications, especially RAG-based ones. See this cool research paper: https://arxiv.org/html/2408.04948v1. After reading that and some other papers on graph and hybrid RAG, we decided to build a hybrid DB. Our aim was to make something better to use from a developer standpoint, while also making it fast as hell.
After a few months of working on this as a side project, our benchmarking shows that we are on par with Pinecone and Qdrant for vectors, and our graph is up to three orders of magnitude faster than Neo4j.
Problems where a hybrid approach works particularly well include:
- Indexing codebases: you can vectorize code-snippets within a function (connected by edges) based on context and then create an AST (in a graph) from function calls, imports, dependencies, etc. Agents can look up code by similarity or keyword and then traverse the AST to get only the relevant code, which reduces hallucinations and prevents the LLM from guessing object shapes or variable/function names.
- Molecule discovery: Model biological interactions (e.g., proteins → genes → diseases) using graph types and then embed molecule structures to find similar compounds or case studies.
- Enterprise knowledge management: you can represent organisational structure, projects, and people (e.g., employee → team → project) in graph form, then index internal documents, emails, or notes as vectors for semantic search and link them directly employees/teams/projects in the graph.
I naively assumed when learning about databases for the first time that queries would be compiled and executed like functions in traditional programming. Turns out I was wrong, but this creates unnecessary latency by sending extra data (the whole written query), compiling it at run time, and then executing it. With Helix, you write the queries in our query language (HelixQL), which is then transpiled into Rust code and built directly into the database server, where you can call a generated API endpoint.
Many people have a thing against “yet another query language” (doubtless for good reason!) but we went ahead and did it anyway, because we think it makes working with our database so much easier that it’s worth a bit of a learning curve. HelixQL takes from other query languages such as Gremlin, Cypher and SQL with some extra ideas added in. It is declarative while the traversals themselves are functional. This allows complete control over the traversal flow while also having a cleaner syntax. HelixQL returns JSON to make things easy for clients. Also, it uses a schema, so the queries are type-checked.
We took a crude approach to building the original graph engine as a way to get an MVP out, so we are now working on improving the graph engine by making traversals massively parallel and pipelined. This means data is only ever decoded from disk when it is needed, and parts of reads are all processed in parallel.
If you’d like to try it out in a simple RAG demo, you can follow this guide and run our Jupyter notebook: https://github.com/HelixDB/helix-db/tree/main/examples/rag_d...
Many thanks! Comments and feedback welcome!
Would love to talk to you about it and make sure we capture all of the pain points if you're open to it? :)
Graph DBs have been plagued with exploding complexity of queries as doing things like allowing recursion or counting paths isn't as trivial as it may sound. Do you have benchmarks and comparisons against other engines and query languages?
Does Helix support much of the graph algorithm world? For things like GrapgRAG.
Either way, I'd be all over it if there was a python SDK witch worked with the generated types!
I mentioned in another comment that you can provide a grammar with constrained decoding to force the LLM to generate tokens that comply with the grammar. This ensures that only valid syntactic constructs are produced.
Currently the road block for that is the LMDB storage engine. We have on our own storage engine on our roadmap, which we want to include WASM support with. If you wanna talk about it reach out to my twitter: https://x.com/georgecurtiss
Can I sidestep the DSL? I want my LLMs to generate queries and using a new language is going to make that hard or expensive.
We're working on putting our grammar in llama's cpp code so that it only outputs grammatically correct HQL. But, even without that it shouldn't be hard or expensive to do. I wrote a Claude wrapper that had our docs in its context window, it did a good job of writing queries most of the time.
No comments yet
> Built for performance we're currently 1000x faster than Neo4j, 100x faster than TigerGraph
I.e: You have to re-index all of the vectors when you make an update to them.
I'm surprised none in the team searched crates.io once before picking the name. Good luck!
https://github.com/helix-editor/helix/discussions/7038
That being said, when I saw `helix-db` I was thrown too. "What's a text editor doing writing a vector-graph database, I thought they were working on plugins?"
We didn't think of getting people to use it until we found it was solving a real pain point for people, so weren't worried about trademarks or names. There was no other helix db so that was good enough for us at the time.
https://en.wikipedia.org/wiki/Helix_(database)
https://en.wikipedia.org/wiki/Apple_Corps_v_Apple_Computer
Does that answer your question properly?
We've built SQL and PGVector ones already, just waiting for someone who could make use of other ones before we build them.
Let us know! Twitter in my bio
My friend who I worked on this with is putting together a technical blog on those graph optimisations so I'll link it here when he's done
One of the problems I know people experience with them is that they're super slow at bulk reading.
Oh also, they aren't built in Rust haha
I think you misspelled "vendor lock in"