The K-Metallic Mirror: An Algebraic System and Its Foundational Symbolic Proofs

1 tristenharr 4 6/3/2025, 3:48:03 AM github.com ↗

Comments (4)

tristenharr · 1d ago
2930441286939258055400798002200365702070383356835498296052929375099603314612750189999474839964041401824000060018138590135001102587299815016150326470813100791358366141506590207652108187961822226141844888227246720852693565292520772736233258137883131633884772691595926733322344165957105221939274575774318941464860860848233258397675536343685662420797069118608961212878580658178971916344998597383060635840095569469168798433682688690011514459699339511226211249166351120903825586706980141114247391189112452169301152785673208885984700944382085177499062708435697669359679050984522704457968238198039501357594162223897683190805618618838233503289429282246135842585430668875653560981464799218782095773523505176978173330569112583486848660662068908749844158638271675670908226354975956636181462553977591227553535134946781776535903879669168739541718125413163115489438127173145671369147353184448182943977584875431449095152717023151009740993170461840098542328540055499213188472025194001595310097403036158566599062407003698164302276578800844789715519909977450325416955326392430087122738870988283653737701175138504893394815816782040327194725855833
tristenharr · 1d ago
from sympy import sqrt, isprime

T1 = (sqrt(5) - 1) / 4 J1 = (3 - sqrt(5)) / 4

def golden_prime_generator(limit): primes = [] for n in range(2, limit): Fn = ((T1 / J1) * n - (-J1 / T1) * n) / sqrt(5) val = int(Fn.round()) if isprime(val): primes.append(val) return primes

my_primes = golden_prime_generator(1000) print(my_primes)

tristenharr · 1d ago
What happens now? :/